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Multicomponent distillation



Introduction

The problem of determining the stage and reflux
requirements for multicomponent distillations is much more
complex than for binary mixtures.

With a multicomponent mixture, fixing one component
composition does not unique|¥ determine the other
component compositions and the stage temperature.

Also when the feed contains more than fwo components it is
not possible to specify the complete composition of the top
and bottom products independently.

The separation between the top and bottom products is
usually specified by setting limits on two "key components",
between which it is desired to make the separation.
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Calculation procedure

The normal procedure for a typical problem is to solve the MESH
(Material balance, Equilibrium, Summation and Heat) balance
equations stage-by-stage, from the top and bottom of the column
toward the feed point.

For such a calculation to be exact, the compositions obtained from
both the bottom-up and top-down calculations must mesh at the
feed point and mesh the feed composition.

The calculated compositions will depend on the compositions
assumed for the top and bottom products at the commencement of
the calculations.

Though it is possible to match the key components, the other
components will not match unless the designer was particularly
fortunate in choosing the trial top and bottom compositions.
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Calculation procedure

For a completely rigorous solution the compositions must be
adjusted and the calculations repeated until a satisfactory match
at the feed point is obtained by iterative trial-and-error
calculations.

Clearly, the greater the number of components, the more difficult
the problem.

For other than ideal mixtures, the calculations will be further
complicated by the fact that the component volatilities will be
functions of the unknown stage compositions.

If more than a few stages are required, stage-by-stage
calculations are complex and tedious.
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"Short-cut" methods

Before the advent of the modern digital computer, various "short-
cut" methods were developed to simplify the task of designing
multicomponent columns.

Though computer programs will normally be available for the
rigorous solution of the MESH equations, short-cut methods are
still useful in the preliminary design work, and as an aid in defining
problems for computer solution.

Intelligent use of the short-cut methods can reduce the computer
time and costs.
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"Short-cut" methods

The short-cut methods available can be divided into two classes:

1. Simplifications of the rigorous stage-by-stage procedures to
enable the calculations to be done using hand calculators, or
graphically.

Typical examples of this approach are the methods 8iven b
Hengstebeck (1961), and the Smith-Brinkley method (1960); whic
are described in Section 11.7 (C&R Vol. VI).

2. Empirical methods, which are based on the performance of
operating columns, or the results of rigorous designs.

Txpical examples of these methods are Gilliland's correlation,
which is given in (C&R Vol. IT, Chapter 11) and the Erbar-Maddox
correlation given in Section 11.7.3 (C&R Vol. VI).
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"Key " components

The designer must select the two "key"™ components between which it is
desired to make the separation.

The light key will be the component that it is desired fo keep out of the
Jtrao‘r’rom r'cgrduc‘r, and the heavy key the component to be kept out of the
op product.

Specifications will be set on the maximum concentrations of the keys in
the top and bottom products.

The keys are known as "adjacent keys" if they are "adjacent" ina lis’ringLof
the components in order of volatility, and "split keys" if some ofher
component lies between them in the order; they will usually be adjacent.

If any uncer’rain’rK exists in identifying keys components (e.g. isomers),
trial calculations should be made using different components as the keys to
determine the pair that requires the largest number of stages for
separation (the worst case).

The "non-key" components that appear in both top and bottom products
are known as "distributed" components; and those that are not present, to
any significant extent, in one or other product, are known as "non-
distributed" components.
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Number and sequencing of columns

In multicomponent distillations it is not possible to obtain more than one
pure component, one sharp separation, in a single column.

If a multicomponent feed is to be split info two or more virtually pure
products, several columns will be needed.

Impure products can be taken off as side streams; and the removal of a
side stream from a stage where a minor component is concentrated will
reduce the concentration of that component in the main product.

For separation of N components, with one essentially pure component taken
overhead, or from the bottom of each column, (N — 1) columns will be
needed to obtain complete separation of all components.

For example, to separate a mixture of benzene, toluene and xylene two
columns are needed (3-1), Benzene is taken overhead from the first column

anld the bottom product, essentially free of benzene, is fed to the second
column.

This column separates the toluene and xylene.
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Costs considerations

The order in which the components are separated will determine
the capital and operating costs.

Where there are several components the number of possible
sequences can be very large; for example, with five components the
number is 14, whereas with ten components it is near 5000.

When designing systems that require the separation of several
components, efficient procedures are needed to determine the
optimum sequence of separation.

al b) c)

Separation schemes
for a 4 components ¢S
mixture »

Fig. 2-20. Different methods of connec-
ting three columns in a quaternary mix-
ture distillation unit.

a)-d) Serial connections of columns

¢) Parallel connection

F Feed

1, 2, 3, 4 Components in the order of
increasing boiling points
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Heuristic rules for optimum sequencing

1. Remove the components one at a time.

2. Remove any components that are present in large
excess early in the sequence.

3. With difficult separations, involving close boiling
components, postpone the most difficult separation to
late in the sequence.

Difficult separations will require many stages, so to

reduce cost, the column diameter should be made a

small as possible. As the column diameter is dependent

on flow-rate, the further down the sequence the smaller

willd?e the amount of material that the column has to
andle.
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Tall and vacuum columns

Where a large number of stages is required, it may be
necessary to split a column into two or more separate
columns to reduce the height of the column, even
though the required separation could, theoretically,
have been obtained in a single column.

This may also be done in vacuum distillations, to reduce
the column pressure drop and limit the bottom
temperatures.
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Short-cuts methods
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Short-cut methods for stage and reflux
requirements

Some of the more useful short-cut procedures which
can be used to estimate stage and reflux requirements
without the aid of computers are given in this section.

Most of the short-cut methods were developed for the
designh of separation columns for hydrocarbon systems
in the petroleum and petrochemical systems industries,
and caution must be exercised when applying them to
other systems (as it is assumed almost ideal behavior of
mixtures).

They usually depend on the assumption of constant
relative volatility, and should not be used for severely
non-ideal systems.
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Pseudo-binary systems

If the presence of the other components does not significantly
affect the volatility of the key components, the keys can be
treated as a pseudo-binary pair.

The number of stages can then be calculated usirclig a McCabe-
Thiele diagram, or  the other methods developed for binary
systems.

This simplification can often be made when the amount of the non-
key components is small, or where the components form near-ideal
mixtures.

Where the concentration of the non-keys is small, say less than
10%, they can be lumped in with the key components.

For higher concentrations the method prorosed by Hengstebeck
(19;16) can be used to reduce the system fo an equivalent binary
system.
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Hengstebeck's method

For any component / the Lewis-Sorel material balance
equations and equilibrium relationship can be written in
terms of the individual component molar flow rates; in
place of the component composition:

Rectifying section S’rmppmg section
Un+1,i = lni +di nili = Vni b
V v
Un,i = KH,F'E‘ZHJ' v:i,i = Kn :L; i:‘l i

where [, ; = the liquid flow rate of any component i from stage n,
v,.; = the vapour flow rate of any component i/ from stage n,
d; = the flow rate of component i in the tops,
b; = the flow rate of component i in the bottoms,
K, ; = the equilibrium constant for component i at stage n

The superscript  denotes the stripping section.
V and L are the total flow-rates, assumed constant.
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Hengstebeck's method

To reduce a multicomponent system to an equivalent
binary it is necessary fo estimate the flow-rate of the
key components throughout the column.

Hengstebeck considers that in a typical distillation the
flow-rates of each of the light non-key components
approaches a constant, limiting, rate in the rectifying
section; and the flows of each of the heavy non-key
components approach limiting flow-rates in the stripping
section.
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Hengstebeck's method

Putting the flow-rates of the non-keys equal to these
limiting rates in each section enables the combined
flows of the key components to be estimated.

lighter _ Rectifying section Stripping section
species

heavier species
(11.46) L,=L - (11.48)

(11.47) V.=V \Zv,/ (11.49)

where V, and L, are the estimated flow rates of the combined keys,
l; and v; are the limiting liquid and vapour rates of components lighter than the
keys in the rectifying section,
I: and v; are the limiting liquid and vapour rates of components heavier than the
keys in the stripping section.
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Hengstebeck's method

The method used to estimate the limiting flow-rates is
that proposed by Jenny (1939). The equations are:

Rectifying section Stripping section
d , ibi
I = (11.50) o = ——— (11.52)
- oi—1 = QK —
vi =li+d; (11.51) I! =v,+b; (11.53)

where a; = relative volatility of component i, relative to the heavy key (HK),
apx = relative volatility of the light key (LK), relative to the heavy key.

d; and b; = corresponding top and bottom flow rate of component /.

01/12/2009
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Hengstebeck's method

Estimates of the flows of the combined keys enable operating lines o be
drawn for the equivalent binary system.

The equilibrium line is drawn by assuming a constant relative volatility for
the light key:

_ KX
1+ (o — x

y

where y and x refer to the vapor and liguid concentrations of the light key.
Hengstebeck shows how the method can be extended to deal with
situations where the relative volatility cannot be taken as constant, and
how to allow for variations in the liquid and vapor molar flow rates.

He also gives a more rigorous graphical procedure based on the Lewis-
Matheson method (see Section 11.8).

01/12/2009
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Bubble and Dew Point calculations

= K,x; '=F(T) [De Priester charts]

=
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M- ipge
=

=
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Bubble point temperature (x known):

ZK(T)X =1 = f(T)= ZK,(T)X, -1

Dew point temperature (y; known):

2kmt = 103 0L

Solution: find the temperature T by trial-and-error procedure as f(T)=0
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Example 11,5

Estimate the number of ideal stages needed in the butane-pentane
splitter defined by the compositions given in the table below.

The column will operate at a pressure of 8.3 bar, with a reflux ratio
R=2.5. The feed is at its boiling point (q=1).

Assumed composition
(for DP & BP calculations)

Feed (f) Tops (d) Bottoms (b)

Propane, 3 > ; 0 C, 0111 0.000
i-Butane, iCy4 15 15 0 3 : :
n-Butane, nCy 25 24 1 ic, 0333 0.000
i-Pentane, i1Cs 20 1 19 nC, 0533 0.018
n-Pentane, nCs 35 0 35 iCc  0.022 0.345
100 45 55 kmol nC; 0.000 0.636

Note: a similar problem has been solved by Lyster et al. (1959) using a
rigorous computer method and it was found that 10 stages were needed.

01/12/2009

21



01/12/2009

Example 11.5 - solution

The top and bottom temperatures (dew points and bubble points)
were calculated by the methods illustrated in Example 11.9.

Relative volatilities are given by equation 8.30:
 Kuk

Equilibrium constants were taken from the De Priester charts.
Relative volatilities estimated:

o

Top Bottom Average
Temp. °C 65 120
Cs 55 4.5 5.0 Light non-key comp.
iCy 2.7 2.5 2.6 Light non-key comp.
(LK) nC4 2.1 2.0 2.0
(HK) iCs 1.0 1.0 1.0

nCs 0.84 0.85 0.85 Heavy non-key comp.

22



01/12/2009

Example 115 - solution

Rectifying section Stripping section
1 r u'ribl
Calculations of L= a—1 " bl —— (11.52)
non-key flows: vi=1li+di (11.51) I =v+b (11.53)
; di Li=di/(e; 1) vi =1l +d,
Stripping C; 5 5 1.3 6.3
section iCy 2.6 15 94 244
£l =10.7 Tv; = 30.7
7 bi v; = a;bi/ (o — ;) li=v+
Rectifyingncy 085 35 25.9 60.9
section
T} = 25.9 I} = 60.9
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Example 115 - solution

Flow of combined keys:

Rectifying section Stripping section
L.=L-XI; (11.46) L'=L -3l (11.48)
Ve=V - Sy (1147) V=V - 5o (11.49)

L.=25x45-10.7=101.8

L=RD
V=(R+1)D V,=2.5+1)45—-30.7 = 126.8
V'=V-(1-q)F V,=(25+1)45-259=131.6
L'=L+qF L, =(2.5+1)45+55—-60.9 = 151.6
Slope of top operating line

L, 101.8

— =—=0.38

V. 1268

R= reflux ratio; g= feed thermal index (1 for boiling liquid; O for saturated vapour)

(11.46)
(11.47)
(11.49)
(11.48)

01/12/2009
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Example 115 - solution

Slope of bottom operating line

L 151.6
Ze = 22 45
V.~ 131.6
X = flow LK _ 1 — 0.05
flow (LK + HK) 19+ 1
24
= —0.96
M= 4
25
= = 0.56
Y= 25420 _
2 X

Equilibrium curve | y

" ilt@-DIx  I+x
Equilibrium points 2 0 020 040 060 080 10

y 0 033 057 075 089 1.0

(11.23)

01/12/2009
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Example 115 - solution

The McCabe-Thiele diagram is shown in Figure: 12 stages required;
feed on seventh from base.

2x 2x 1.0
YEIre-1x T+x
x 0 020 040 060 0.80 1.0 X
y 0 033 057 075 089 1.0 d
0.8
0.6
0.4

0.4 06 0.8 1.0
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Empirical correlations methods

The two most frequently used empirical methods for estimating the
stage requirements for multicomponent distillations are the
correlations published by Gilliland (1940) and by Erbar and Maddox
(1961).

These relate the number of ideal stages required for a given
separation, at a given reflux ratio, to the number at total reflux
(minimum possible) and the minimum reflux ratio (infinite number
of stages).

Gilliland's correlation is given in C-R Vol. 2, Chapter 11.

The Erbar-Maddox correlation is given in this section, as it is now
generally considered to give more reliable predictions.

Their correlation is shown in Figure 11.11; which gives the ratio of
number of stages required to the number at total reflux, as a
function of the reflux ratio, with the minimum reflux ratio as a
parameter.

To use Figure 1111, estimates of the number of stages at total
reflux and the minimum reflux ratio are needed.

01/12/2009
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Number of stages calculation

1-00
Fig.11.11 0901220 i;/A//
ig.11. — —
—
Erbar-Maddox  csfese | mee—""" — /
correlation — I
(1961) o T
069080 '"'—:'fféi \
R/(R+1)=06 — ' [~ d—rT | / @t
z 0.500‘50 —-r""—-—--_-—/j/ ‘ /{.f.
: —
[+ 4 N -
Example: 040[240 - J—;"_‘:.: L €
Rm:1.33 030 030-—-____,_—’"-: ”I‘ /
R=15 [ T
W e S~ S rapototed "
020[Q20==1 — L
Ro/(Ry#1)=057  °*[ -~ 1o
R/(R+1)=0.6 Joro-t-—~ rd
N,/N=0.34 7
N, /N=0.34 / N

28



Number of stages calculation

Gilliland correlation (1940), C&R II Vol.
Log-log plot

, 0.8
Linear plot 0.6fF—f=

1.0 0.4 \\
0.8

¢ k 0.2 | \
| 06

SRS N

IE 04N 0.06 A
gl o2 . 0.04

\I'\-T 0.02

0O ©¢2 04 06 08 10 001002 004 0.1 02 04 061.0
R_Hm R_Hm
R+1 A+1

Ul ( 1+54.4Y j(‘l’—lj here: ¥ — R-R,
n+1 111117 2% \ wo° where. -
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Minimum number of stages (Fenske Equation)

The Fenske equation (Fenske, 1932) can be used to estimate the
minimum stages required at total reflux.

The derivation of this equation for a binary s?/s’rem is 1given in C-R
Vol. 2, Chapter 11. The equation applies equally to mulficomponent
systems and can be written as:

[x_] " [x—] (11.57)
Xrld Xrlp

where [x;/x,] = the ratio of the concentration of any component i to the concentration of

a reference component r, and the suffixes d and b denote the distillate
(tops) (d) and the bottoms (b),
N,, = minimum number of stages at total reflux, including the reboiler,

«; = average relative volatility of the component i with respect to the
reference component.

01/12/2009
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Minimum number of stages (Fenske Equation)
Normally the separation required will be specified in terms of the

key components, and equation 1157 can be rearranged to give an
estimate of the number of stages.

[XLK] [IHK]
log
N, = YHK 1 LXK Ip  (11.58)

" log o k

where o, is the average relative volatility of the light key with
respect to the heavy key, and x  and x ., are the light and heavy key
concentrations.

The relative volatility is taken as the geometric mean of the values
at the column top and bottom temperatures.

To calculate these tfemperatures initial estimates of the
compositions must be made, so the calculation of the minimum
number of stages by the Fenske equation is a trial-and- error
procedure.

01/12/2009
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Large relative volatilities and feed location

If there is a wide difference between the relative volatilities at
the top and bottom of the column the use of the average value in
the Fenske equation will underestimate the number of stages.

In these circumstances, a better estimate can be made by
calculating the number of stages in the rectifying and stripping
sections separately.

The feed concentration is taken as the base concentration for the
rectifying section and as the top concentration for the stripping
section, and estimating the average relative volatilities separately
for each section.

This procedure will also give an estimate of the feed point location
cannot be taken as constant.

01/12/2009
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Components split estimate

If the number of s’rages is known, equation 11.57 can be used
to estimate the split of components between the top and
bottom of the column at total reflux.

It can be written in a more convenient form for calculating
the split of components:

Fenske Equation g-'— = ' Ei] (11.59)

r

where d; and b; are the flow-rates of the component /in the tops
and bottoms, d. and b, are the flow-rates of the reference (light
key) component in the tops and bottoms.

Note: from the column material balance:
ct.-f tv = f;
where f; is the flow rate of component /in the feed.

01/12/2009
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Minimum reflux ratio - Underwood equation

Colburn (1941) and Underwood 41948) have derived equations for
estimating the minimum reflux ratio for multicomponent
distillations. These equations are discussed in C-R Vol. 2, Chapt. 11.

As the Underwood equation is more widely used it is presented in
this section. The equation can be stated in the form:

3 itid _p 41 (11.60)
o; — ﬂ

«a; = the relative volatility of component i with respect to some reference
component, usually the heavy key;

R,,, = the minimum reflux ratio;

X;.4 = concentration of component 7 in the tops at minimum reflux;

X f

and 6 is the root of the equation: Z —1—gq 1< 8 < o

a; — B

x; = the concentration of component 7 in the feed, and g depends on the condition
of the feed and was defined in Section 11.5.2.

The value of 6 must lie between the values of the relative volatility of the light and
heavy keys, and is found by frial and error.
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Minimum reflux ratio

In the derivation of equations 11.60 and 11.61 the
relative volatilities are taken as constant.

The geometric average of values estimated at the top
and bottom ’remﬁem‘rur‘es should be used. This requires
an estimate of the top and bottom compositions.

Though the compositions should strictly be those at
minimum reflux, the values determined at total reflux,
from the Fenske equation, can be used.

A better estimate can be obtained by replacing the
number of stages at total reflux in equation 11.59 by an
estimate of the actual number; a value equal to N, /0.6
/s often used.

01/12/2009
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Feed-point location

A limitation of the Erbar-Maddox, and similar empirical methods, is
that they do not give the feed-point location.

An estimate can be made by using the Fenske equation to calculate
the number of stages in the rectifying and s‘rr'iEpin% sections
separately, but this requires an estimate of the feed-point
temperature.

An alternative approach is to use the empirical equation given by
Kirkbride (1944):

N, B\ (xruk\ [ X Ll-:)2
1 — | = 0.2061 — ' 11.62
% [Ns] o [(D) (If.LK) (xd,HK (1.6

where N, = number of stages above the feed, including any partial condenser,
N; = number of stages below the feed, including the reboiler,
B = molar flow bottom product,
D = molar flow top product,
X HK = concentration of the heavy key in the feed,
Xy Lk = concentration of the light key in the feed,

xg qk = concentration of the heavy key in the top product,
xp,Lx = concentration of the light key if in the bottom product.
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Distribution of non-key components
(graphical method)

The graphical procedure proposed by Hengstebeck (1946), which is
based on the Fenske equation, i1s a convenient method for
estimating the distribution of components between the top and
bottom products.

Hengstebeck and Geddes (1958) have shown that the Fenske
equation can be written in the form:

d;
log (b_) =A+ Cloga; (11.63)

1

Specifying the split of the key components determines the
constants A and C in the equation.

The distribution of the other components can be readily
determined by plotting the distribution of the keys against their
relative volatility on log-log paper, and drawing a straight line
through these two points.
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Example 11.6: Geddes-Hengstebeck method

Use the Geddes-Hengstebeck method to check the component
distributions for the separation specified in Example 11.5

Summary of problem, flow per 100 kmol feed

Component a; Feed (f;) Distillate (d;) Bottoms (b;)
Cs 5 5
1Cy 2.6 15
| nC4 (LK) 2.0 25 24 1
[iCs (HK) ] 1.0 20 1 19

nCs 0.85 35
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Example 11.6: solution

The average volatilities will be taken as those estimated in Example
11.5. Normally, the volatilities are estimated at the feed bubble
point, which gives a rough indication of the average column
temperatures. The dew point of the tops and bubble point of the
bottoms can be calculated once the component distributions have
been estimated, and the calculations repeated with a new estimate
of the average relative volatilities, as necessary.

For the light key,%=$=24
For the heavy key, = = — = 0.053
or the heavy ey'b_,-—l‘)_ .

The distribution of the non-keys are read from Figure.

As these values are close to those assumed for the calculation of
the dew points and bubble points, there is no need to repeat with
new estimates of the relative volatilities.

01/12/2009
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_.— . Component distribution

Light key =2  di/b=24, o =2

Heavy key @  d,/b;=0.053, o= 1

iCq 53 The distribution of the non-keys are read from
] Figure at the appropriate relative volatility and
» § the component flows are calculated from the
LK Cs . following equations:
‘ Overall column material balance = d.+b,=f;
&
" From which d; = —E)i-—-—- bi = %
| (-«i + 1) (—' + 1)
I d; b
f
1o? o; fi di/b; d; bi
T i C; 5 5 40,000 5 0
i 1 1C4 2.6 15 150 14.9 0.1
ﬂ o nCy 2.0 25 21 24 1
n— A iCs 1.0 20 0.053 1 19
nCs 0.85 35 0.011 0.4 34.6
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Example 11.7 - Erbar-Maddox method

For the separation specified in Example 11.5, evaluate the effect
of changes in reflux ratio on the number of stages required.

Solution

The relative volatilities estimated in Example 115, and the
component distributions calculated in Example 11.6 will be used for

this example.
Summary of data

; fi d; bi
C; 5 5 5 0
1C, 2.6 15 14.9 0.1
nC4 (LK) 2.0 25 24 1
iCs (HK) 1 20 1 19
nCs 0.85 35 0.4 34.6

100 D =453 B =547
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Example 11.7 - solution

Minimum number of stages; Fenske equation, equation 11.58:

LG )

- log 2 =
Minimum reflux ratio; Underwood equations 11.60 and 11.61.
As the feed is at its boiling point g = 1

Try

Xi f o; aiX; ¢ 6=1.5 =13 8=1.35

0.05 5 0.25 0.071 0.068 0.068 -
Trial and error 0.15 2.6 0.39 0.355 0.300 0.312
l l 1_ 0.25 2.0 0.50 1.000 0.714 0.769
calcuiation 0.20 1 0.20 —0.400 ~0.667 —0.571
0.35 0.85 0.30 —0.462 —0.667 —0.600
T = 0.564 —0.252 0.022

close enough

6 =1.35

01/12/2009
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Example 11.7

. Xi d 7 O X d aixiq/ (@ —6)
solution

0.11 5 0.55 0.15

Underwood equation (11.60) 033 26 0.86 0.69

- 053 20 1.08 1.66

Y =R+ 0.02 1 0.02 ~0.06

o — 0 001 08  00] —0.02
o= 1.35 Y =242

> m - T _—0.59
Rn = 1.42 (R, + 1) 2.42
Case of R=2.0: I % = 0.66 From E-M diagram (Fig. 11.11):
+
v 8.8
No 056 N=——=157
for other reflux ratios N 0.56 =—
R 2 3 4 5 6

N 15.7 11.9 10.7 10.4 10.1
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Example 117 - solution

R
a =0.59

R, +1) 242

00
--"""—-‘
=]
090 p220 ]
080 r:
—-—-_‘—___.-—-'"‘ 4 il
070 — pme" __-/|‘ = z )
—_ =7 1~ ,///‘EZ?/' )
N
— L~ x
om&&—#—ﬁ-‘: ’/ / / \Q'f
- T | /’/, ?'43
____-—r""‘ n’L”/”’/////
5501050 — A S
—— —
] — ’/: &
__,.-—"P/// - &
040240 "] ] S - . \(9&
___.-—"" ’d"’,/’ g
Oﬂﬂo’m ——-"'-'—---—— - - ’1’
------ ol 4 "” -
—————— de=" Based onUnderwood R,
——— 1 === Extrapolated
0/020-=F— ="
020 =" — =7
b v = T —'dﬂ"
onlelo-T~ _ =7
p--'"’--—/
4
0 c-0 020 030 e} 050 070 080 0930

Np/ N ————

l 2

Z =0.56

=2

01/12/2009

44



01/12/2009

Example 11.8 - Feed point estimation

Estimate the position of the feed point for the separation
considered in Example 11.7, for a reflux ratio of 3.

(5) () ()
D/ \xr1x/ \X4HK
Product distributions 1 1
taken from Example 11.6: X1k = 75— =0.018  Xank = 7=

Solution

Use the Kirkbride
equation (11.62):

log [%] = 0.206log

= 0.022

Lh

3
oo (7Y _ 0206108 | 347 (0.20 0013 o0 (%) — 02061080651 > Ne _
* (N_c) %8453 0.25) (0022 %2\ N, 20610g(0.65) N

forR=3,N=12
number of stages, excluding the reboiler = 11

F:‘
D
fr—

N, +N;=11

11
N.=11=N, =11-09IN, =2 Ny =7 =976, say 6
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Summary of empiric methods

Data: feed composition and thermal condition, operating pressure.

1.

Choose LK and HK and fix their distribution on top and bottom
product

Estimate overall top and bottom flow rate compositions (assume
light non-key components in top and heavy non-key component in
bottom as first attempt)

. Estimate dew and bubble points on top, bottom and feed

Bubble point » 3 =Y K =10 (11.5a)
Dew point 3 x = %:1.0 (11.5b)

(K; taken from De Priest chart).

01/12/2009
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Summary of empiric method - cnt

4. Estimate relative volatility with respect to the HK K.
of all comps. at the T, (top) and T, (bottom): «; = -E'"L
HK

and calculate average volatilities o= (o 10, pot)°

5. Recalculate overall top and bottom flow rate compositions on
the basis of the Hengstebeck and Geddes equation:

d;
log (b_) =A+ Clogu;

1

by plotting on log-log diagrams knew points relevant to LK & HK
(assume first trial relative volatilities)

Please note that A=log(d,/b,) and C=[log(d, /b ) -Al/loga ¢

Check first attempt composition and go back to step 3 to update
Tgew and Ty, and recalculate relative volatilities if necessary.
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Summary of empiric method - cnt

6. Estimate the minimum number of stages for the separation N,

o [ILK] [IHK]
Fenske eq.: N,, = *HK Jd LXK Ip
log a1 k

7. Estimate the minimum reflux ratio R,

Underwood eq.:  $° “‘x‘*‘; =Ry + |
o; —

where 0 is the root of eq.: Z :'i{g =1—-gq q = (Lg-Ls)/F

Please note that 1<0< oy
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Summary of empiric method - cnt

Choose an operative reflux ratio R and calculate ’rhe humber of
(ideal) stages N with the :

a) Erbar-Maddox diagram iy =

or

b) with Gilliland Correlation: Sz '

N -N 1+54.4Y (Y -1 R-R
" =1-exp 55 Y = .
N +1 11+117.2%Y \ ¥ R+1

Calculate the feed stage position

N, B 2
Kirkbride eq.: log[ ] = 0.206 log [(D) (xf.HK) (Ib,LK) ]
N Xf LK/ \Xd HK
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De Priester charts - values for hydrocarbons
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calculation methods
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Example 11,9 - Stage by stage calculation

This example illustrates the complexity and trial and error nature

of stage-by-stage calculation.

The same problem specification has been used in earlier examples

to illustrate the shortcut design methods.

A butane-pentane splitter is to operate at 8.3 bar with the

following feed composition:

f mol/100 mol feed

Xf

Propane, Cs 0.05 5

Isobutane, 1Cy 0.15 15
LK Normal butane, nCy 0.25 25
HK Isopentane, iCs 0.20 20

Normal pentane, nCs 0.35 35

Light key nCy

Heavy key iCs

Specification: not more than 1 mol of the light key in the bottom product
and not more than 1 mol of the heavy key in the top product, reflux ratio
of 2.5. Make a stage-by-stage calculation to determine the product

composition and number of stages required.
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Example 11.9 - solution

Only sufficient trial calculations will be made to illustrate the
method used.

Basis 100 mol feed.

Bubble point » yi =Y Kix; =10
Estimation of dew and bubble points:

. Yi
i = _—= 1.0
Dew point Z:x X
5
4 ///
g
The K values, taken from the De //
. . /
Priester charts, are plotted in l - o | o | 4+
Figure for easy interpolation. | 2 g
/‘ﬁ,—
1’/__1/ : -
— —=—

60 70 80 90 100 110 120
—— Temperature, °C = —e

Figure (@). K-values at 8.3 bar
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Example 11.9 - solution

To estimate the dew and bubble points, assume that nothing
heavier than the heavy key appears in the tops, and nothing lighter

than the light key in the bottoms.

Bubble-point calculation, bottoms

Bottom & top composition
(first attempt assumption)

d X4 b Xp
Cs 5 0.11 0 —
C, 15 0.33 0 —
nC, 24 0.54 1 0.02
iCs 1 0.02 19 0.34
nCs 0 — 35 0.64
45 55

Bubble-point calculation, feed (liquid)

Try 100°C Try 120°C
Xb K,' K,-x,- K,' K,-x,-

C; — — — —_ —
iCy — — — — —
nCy 0.02 1.85 0.04 2.1 0.04
iCs 0.34 0.94 0.32 1.1 0.37
nCs 0.64 0.82 0.52 0.96 0.61
ZKix; = 0.88 1.02
temp. too low close enough

Dew-point calculation, tops
Try 70°C Try 60°C

X4 K, yi/K; K; Yi/K;
Cs 0.11 2.6 0.04 2.20 0.24
iCyq 0.33 1.3 0.25 1.06 0.35
nCq 0.54 0.9 0.60 0.77 0.42
iCs 0.02 0.46 0.04 0.36 0.01
nCs — — — — —
Tyi/K; =094 1.02

temp. too high

close enough

Try 80°C Try 90°C Try 85°C
Xr K,‘ x,'K,- K,‘ x;K; K,' xiK;
0.05 29 0.15 3.4 0.17 3.15 0.16
0.15 15 0.23 1.8 0.27 1.66 0.25
0.25 1.1 0.28 1.3 0.33 1.21 0.30
0.20 0.5 0.11 0.66 0.13 0.60 0.12
0.35 0.47 0.16 0.56 0.20 0.48 0.17
0.93 1.10 1.00
temp. too low temp. too high satisfactory
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Example 11.9 - solution

Top down calculations, assume total condensation with no sub-cooling
Yi1= Xqg — Xp

It is necessary to estimate the composition of the "non-keys" so
that they can be included in the stage calculations.

X4 d

C; 010 5

. . " iC, 033 15
First trial fop composition: nCs 054 24
iCs 002 1
nCs 0001 01

45.1

In each stage calculation it will necessary to estimate the stage
temperatures to determine the K values and liguid and vapor
enthalpies. The temperature range from top to bottom of the column
will be approximately 120 — 60 = 60°C. An approximatre calculation
(Example 11.7) has shown that around 14 ideal stages will be needed;

so the temperature change from stage to stage can be expected to
be around 4 to 5°C.

01/12/2009
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Example 11,9 - Stage 1

Estimation of stage temperature and outlet liquid composition (x;),

Impose equilibrium between V; and L;:

T,=60°C, L, v, T
ou X * l Vi

X Yz
?
L| V2
Lo=RxD=25x%x451=1128
Vi=(R+1D=35x%x45.1=157.9

Try T = 66°C Try T, = 65°C
» K; yi/K; K; yi/K; x; = yi/K;
Normalised
Cs 0.10 2.40 0.042 2.36 0.042 0.042
iCy 0.33 1.20 0.275 1.19 0277 0.278
nC, 0.54 0.88 0.614 0.86 0.628 0.629
iCs 0.02 0.42 0.048 0.42 0.048 0.048
nCs 0.001 0.32 0.003 0.32 0.003 0.003
Zy;/K; = 0.982 0.998
too low close enough

01/12/2009
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Example 11,9 - Stage 1

) =
Summary of stage equations: L N :‘534 : ——
Lo+Va=Li+V, W T —=r:
Loxo + Vay, = Lix; + Vi y (i) T - A
holo + H,V, =Ly + HV, (i) :0» jﬁm
pmrwn | e Ee T
H=f(xT) v | ==
Yi = Kix; (v1) T (®)
e % W T 2o

Temperature, °C ——=
Enthalpy [kJ/kmol] diagram of liquid
and vapor hydrocarbons
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Example 11,9 - Stage 1

Before a heat balance can be made to estimate L, and V, an estimate
of y,and T;is needed. V/,is dependent on the liquid and vapor flows,
so as a first trial assume that these are constant and equal to £, and
I/ then, from equations (i) and (ii):

Y= (é?') (x1 —x0) + ¥
Approximate mass !

balance over the stage Ly 1128 0.71
Vi 1579
2
X X0 y2 = 0.71(x; — x0) + yi Normalised
C; 0.042  0.10 0.057 0.057
1Cy 0.278 0.33 0.294 0.292
nCy 0.629 0.54 0.604 0.600
iCs 0.048 0.02 0.041 0.041
nCs 0.003 0.001 0.013 0.013
1.009

close enough

01/12/2009
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Example 11,9 - Stage 1

Enthalpy data from figure:

ho(To = 60°C) hi (T, = 65°C)
Xo h; hix; X h; hix;
Cs 0.10 20,400 2040 0.042 21,000 882
iCq 0.33 23,400 7722 0.278 24,900 6897
nCy 0.54 25,200 13,608 0.629 26,000 16,328
iCs 0.02 27.500 550 0.048 28,400 1363
nCs 0.001 30,000 30 0.003 30,700 92
hg = 23,950 h, = 25,562
H (T, =65°C) H,(T, = 70°C assumed)
V| H; H,;y; y2 H; H;yi
Cs 0.10 34.000 3400 0.057 34,800 1984
1C4 0.33 41,000 13,530 0.292 41,300 12,142
nC, 0.54 43,700 23,498 0.600 44200 26,697
iCs 0.02 52,000 1040 0.041 52,500 2153
nCs 0.001 54,800 55 0.013 55,000 715
H, = 41,623 H, = 43,691

01/12/2009
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Example 11,9 - Stage 1

Energy balance (equation iii)

23,950 x 112.8 + 43,691V, = 25,562L, + 41,623 x 157.9
43,691V, = 255,626L; + 3,870,712
Material balance (equation i)
11284+ V> =L; + 1579

substituting

43,691(L; +45.1) = 25,562L, + 3,870,712

L, =104.8
V, = 104.8 +45.1 = 149.9
L

=L —~0.70

V,
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Example 11.9 - Stage 1

Energy balance (equation 1ii)

23,950 x 112.8 + 43,691V, = 25,562L, + 41,623 x 157.9

43,691V, = 255,626L,; + 3,870,712
Material balance (equation i)

11284V, =L; + 1579

substituting

43,691(L; +45.1) = 25,562L; + 3,870,712

L, =104.8
V, = 104.8 +45.1 = 149.9
L

=L ~0.70

Va

Could revise calculated values for y, but L,/V, is close enough to
assumed value of 0.77, so there would be no significant difference
from first estimate.
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Example 11,9 - Stage 2

Lf= 1045 V2= 1496
L
x; (known) + * ¥, (known) As a first trial take L/V as L/V, = 0.70 ¥ = V(xz —X)+ ¥y
2 X x| 3 =07006 = x1) + »2 bz
Normalised
* * Cs 0022 0042 0.044 0.043
iCs 022 0277 0.256 0.251
Lo Va nC; 0630 0628 0.613 —> 0601
Xp @ iCs 0093 0048 0.072 0.072
‘ nCs 0033  0.003 0.035 0.034
1.020

Estimation of stage temperature and
outlet liquid composition (x).

Enthalpy data from Figures (b) and (¢)

Ty = 70°C (use assumed value as first trial)

v K; X2 = ya/K; X hy (T, = 70°C) H1(Ty = 75°C assumed)

Normalised X hi hix » H; Hiy;
G 0057 2.55 0.022 0.022 C; 0022 21,900 482 0043 34,600 1488

iCq4 0.292 1.30 0.226 0.222 .
nCy 0.600 0.94 0.643 0.630 iCy 0.222 25,300 5617 0.251 41,800 10,492
iCs 0:041 0: 43 0: 095 0:093 nCy 0.630 27,000 17,010 0.601 44,700 26,865
nCs 0.033 31,600 1043 0.035 55,400 1939

1.020
close enough to 1.0 hy = 26,896 Hj = 44,600
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Example 11,9 - Stage 2

Energy balance
25,562 x 104.8 + 44,600V = 4369 x 149.9 + 26,8961,

Material balance

1048+ V3 =1499+ L,

L, = 105.0
Vs = 150.1
L,

V- = (.70 checks with assumed value.
3
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Example 11.9 - Stages 3-4

As the calculated liquid and vapor flows are not changing much from stage
to stage the calculation will be continued with the value of L/V faken as
constant at O.7.

Try T3 = 75°C (assumed value)

K,‘ X3 = y;/Ki Normalised Y4 = 0.7()(3 - XZ) + 3
G 2.71 0.016 0.015 0.38
iC4 1.40 0.183 0.177 0.217
S‘rage 3 nCq 1.02 0.601 0.580 0.570
iCs 0.50 0.144 0.139 0.104
nCs 0.38 0.092 0.089 0.074
1.036 1.003

Close enough

Try T4 = 81°C
K; x4 = na/K; Normalised vs = 0.7(x4 — x3) + W
C3 2.95 0.013 0.013 0.039
iC4 1.55 0.140 0.139 0.199
S'l'age 4 nC, 1.13 0.504 0.501 0.515
iCs 0.55 0.189 0.188 0.137
nCs 0.46 0.161 0.166 0.118
1.007 1.008

Close enough
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Example

11.9 - Stages 5-6

Try Ts = 85°C
K; Xs Normalised ¥o = 0.7(xs — x4) + ¥5

Cs 3.12 0.013 0.012 0.038

iCa 1.66 0.120 0.115 0.179

STGQ e 5 nCs 120 0430 0.410 0.450

iCs 0.60 0.228 0.218 0.159

nCs 0.46 0.257 0.245 0.192

1.048 1.018

Close enough
Try Te = 90°C Try Tg = 92°C
K; X K; X6 Normalised ¥y7
C; 3.35 0.011 3.45 0.011 0.011 0.037
iCy 1.80 0.099 1.85 0.097 0.095 0.166
nC,4 1.32 0.341 1.38 0.376 0.318 0.386
S"‘age 6 iCs 0.65 0.245 0.69 0.230 0.224 0.163
nCs 0.51 0.376 0.53 0.362 0.350 0.268
1.072 1.026 1.020
too low close enough
. e ) 0.386
Note: ratio of LK to HK in liquid from this stage = 0163 = 2.37
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Example 11.9 - Stage 7

Stage 7 composition

Feed composition Ty Te = 97°C
Xf X7 K; X7 Normalised
Cs 0.05 0.10 Cs 3.65 0.010 0.010
iCy 0.15 0.084 iCy4 1.98 0.084 0.083
nC, 0.25 0.254 nC, 1.52 0.254 0.251
iCs 0.20 0217 iCs 0.75 0.217 0214
nCs 0.35 0.447 nCs 0.60 0.447 0.442
1.012
.. . o LK _ 0251
This is just below the ratio in the feed ratio = = o= =1.
25
=— =125
20

So, the feed would be introduced at this stage.
But the composition of the non-key components on the plate does not match the feed

composition.

So it would be necessary to adjust the assumed top composition and repeat the calculation.
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Example 11.9 - Bottom>up calc.

To illustrate the procedure the calculation will be shown for the
reboiler and bottom stage, assuming constant molar overflow.

With the feed at its boiling point and constant molar overflow the
base flows can be calculated as follows:

Vi=Vy=1579
L' =Ly+FEED = 112.8 + 100 = 212.8
v’ 157.9
—_—= —— =074
L 212.8
B
L
Y
It will be necessary to estimate the Cs iCa nCs  iCs nCs

concentration of the non-key components in

. ) 0.001 0001 002 034 064
the bottom product; as a first trial take:
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Example 11.9 - reboiler

Check bubble-point estimate of 120°C

Try 120°C Try 118°C

XB K; yg = Kixp K; YB
C; 0.001 4.73 0.005 4.60 0.005
1Cy4 0.001 2.65 0.003 2.58 0.003
nCy 0.02 2.10 0.042 2.03 0.041
iCs 0.34 1.10 0.374 1.06 0.360
nCs 0.64 0.96 0.614 0.92 0.589
1.038 0.998

too high close enough

Material balance

xgL' = ygV' + xzB

Ys
v/ B
Vv'=157.9 _y d
XBL = 4 yB + ;%8
157.9 + 55
X — X
Bl = 512872 T 212878

= 0.74yp + 0.26xp
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Example 11,9 - Stage 1 (from bottom)

XB yB XBI xp2 = 0.74(y1p — yB) + xip
C; 0.001 0.005 0.004 0.014
1C4 0.001 0.003 0.002 0.036
nCy 0.02 0.041 0.020 0.019
iCs 034 0361 0356 0.357
nCs 0.64 0.590 0.603 0.559
0.985

The calculation is continued stage-by-stage up the column to the
feed point (stage 7 from the top).

If the vapor composition at the feed point does not mesh with the
top-down calculation, the assumed concentration of the non-keys in
the bottom product is adjusted and the calculations repeated.
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Rigorous computer methods

The application of digital computers has made the rigorous solution
of the MESH equations a practical proposition, and computer
methods for the design of multicomponent separation columns will
be available in most design organizations.

A considerable amount of work has been done over the past twenty
or so years to develop efficient and reliable computer-aided design
procedures for distillation and other staged processes.

Several different approaches have been taken to develog programs
that are efficient in the use of computer time, and suitable for the
full range of multicomponent separation processes that are used in
the process industries.

A design group will use those methods that are best suited to the
processes that it normally handles.

In this section a brief outline will be given of the methods that
have been developed.
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Rigorous solution procedure: basic steps

The basic steps in any rigorous solution procedure will be:

1. Specification of the problem; complete specification is essential
for computer methods.

2. Selection of values for the iteration variables; for example,
estimated stage temperatures, and liquid and vapour flows (the
column temperature and flow pr'oflles%.

3. A calculation procedure for the solution of the stage equations.

4. A procedure for the selection of new values for the iteration
variables for each set of trial calculations.

5. A procedure to test for convergence; to check if a satisfactory
solution has been achieved.
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Available computer methods

It is convenient to consider the methods available
under the following four headings:

1. Lewis-Matheson method.
2. Thiele-Geddes method.
3. Relaxation methods.

4. Linear algebra methods.
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Rating and design methods

With the exception of the Lewis-Matheson method, all the
methods listed above require the specification of the number of
stages below and above the feed point.

They are therefore not directly applicable to design: where the
designer wants to determine the number of stages required for a
specified separation.

They are strictly what are referred to as "rating methods"; used
to determine the performance of existing, or specified, columns.

Given the number of stages they can be used to determine product
compositions.

Iterative procedures are necessary to apply rating methods to the
design of new columns.

An initial estimate of the number of stages can be made usin

short-cut methods and the programs used fo calculate the produc

compositions; repeating the calculations with revised estimates till
a satisfactory design is obtained.
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Lewis-Matheson method

The method proposed by Lewis and Matheson
(1932) is essentially the application of the
Lewis-Sorel method (Section 11.5.1) to the
solution of multicomponent problems.

Constant molar overflow is assumed and the
material balance and equilibrium relationship
equations are solved stage by stage starting at
the top or bottom of the column (refer to the
Example 11.9 C&R Vol. VI).
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Lewis-Matheson method

To define a problem for the Lewis-Matheson method the
following variables must be specified, or determined from
other specified variables:

Feed composition, flow rate and condition.
Distribution of the key components.

One product flow.

Reflux ratio.

Column pressure.

ook w =

Assumed values for the distribution of the non-key
components.
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Lewis-Matheson method

The usual procedure is to start the calculation at the top and
bottom of the column and proceed toward the feed poinf.

The initial estimates of the component distributions in the
products are then revised and the calculations repeated until
the compositions calculated from the top and bottom starts
mesh, and match the feed at the feed point.

Efficient procedures for adjusting the compositions to

achieve a satisfactory mesh at the feed point are given by
Hengstebeck (1961).

Good descriptions of the Lewis-Matheson method, with
examples of manual calculations, are also ,given in the books
by Oliver (1966) and Smith (1963). a simple example is given
in C&R Vol. 2, Chapter 11.

01/12/2009

76



Lewis-Matheson method

In some computer applications of the method, where the
assumption of constant molar overflow is not made, it is convenient
to fs_;rar"r the calculations by assuming flow and temperature
profiles.

The s’rage component compositions can then be readily determined
and used to revise the profiles for the next iteration.

In general, the Lewis-Matheson method has not been found to be
an efficient procedure for computer solutions, other than for
relatively straightforward problems.

It is not suitable for problems involving multiple feeds, and side-
streams, or where more than one column is needed.

The method is suitable for interactive programs run on
programmable calculators and Personal Computers.

As the calculations are carried out one stage at a time, only a
relatively small computer memory is needed.
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Lewis-Matheson method: details
(C&R Vol. 2)

In a binary system, the relationship between the composition of the vapour
y4and of the liquid x, in equilibrium may also be expressed in a way, which is
particularly useful in distillation calculations.

If the ratio of the partial pressure to the mole fraction in the liquid is
defined as the volatility, then:

volatility of A =P,/x, and  volatility of B = Py/x;

The ratio of these two volatilities is known as the relative volatility « given
by (ideal systems):

g = Puxo/Poxy = P°4/P%

Being P the total pressure, substituting Py, for P,, and Py, for Ppy:
aag = PyaXa/PypX,a = YaXa/YeXa
Ya/Ys= Oap Xa/ X3

The extension of this concept to multicomponent (ideal) systems with
components A, B, C, D, ... leads to:

Yal¥Ye = Gap Xa/Xp: Yc/Ys = Ocg Xc/Xp: Yo/Ys = Opg Xp/Xp! ...

01/12/2009

78



Lewis-Matheson method: details

If a mixture of components A, B, C, D, and so on has mole
fractions x,, x5 X, xp, and so on in the liquid and y,, va y. ¥

and so on in the vapour, then:

as

subst.:

expliciting:

similarly:

Yat+Yg +VYe+Yp+...=1
Ya/Ye +Ye/Ye +Yc/Ye + Yo /Ys +-=1/Ys
yi/yB = Qi Xi/yB

U pg XA/XB T Ay XB/XB T g XC/XB T Apg XD/XB +.. :1/YB

ZaiBXi = Xg /Y5
=

=z

N
Y = Xg ZaiBXi
i=1

N N N
Ya= XA/ZaiAXi v Yo = XC/ZaiCXi » Yp = XD/ZaiDXi :
i=1 i=1 i=1

1)
(2)
(3)
4)

)

(6)

7)

01/12/2009

79



Lewis-Matheson method: example

A mixture of ortho, meta, and para-mononitrotoluenes containing

60 % mol ortho-mononitrotoluene
4% mol meta-mononitrotoluene
36% mol para-mononitrotoluene

Is to be continuously distilled to give a ’rozp groduc‘r of x4,=98% mol
ortho, and the bottom is to contain x,,=12.5% mol ortho.
The mixture is to be distilled at a bottom temperature of Ty=410K
requiring a pressure in the boiler of about P=6.0 kN/m?2.

If a reflux ratio of R=5 is used, how many ideal plates will be
required and what will be the approximate compositions of the
product streams?

The volatility of ortho relative o the para isomer may be taken as
oc?pgéggl%nlcé of the meta as a,,=1.16 over the temperature range
0 - :
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Specs:

Xfor = 0.4

Xfm, =0.04

xfp =0.36

Xdo =0.98

X, =0.125

P = 6 kN/m?
T, =410K
R=L,/D=5

Column scheme

D, Xdor Xam: Xap

W, X0, X

wme xwp
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Lewis-Matheson method: example

Solution
As a first estimate, it is supposed that the distillate contains 0.6%
meta and 1.4% para.
A material balance then gives the composition of the bottoms.

For 100 kmol of feed with O and W kmol of product and bottoms,
respectively and x,, and x,, the mole fraction of the ortho in the
distillate and bottoms, then an overall material balance gives:

100=0D0+ W
An ortho balance gives:
60 = Ox,, + Wx,,
and:
60 = (100 - W)0.98 + 0.125W
from which:
O = 55.56 kmol/ and W = 44.44. kmol
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Lewis-Matheson method: example

The compositions and amounts of the streams are then be obtained by
the overall mass balance as follows:

Component Feed Distillate Bottoms

(kmol)  (mole per cent) (kmol) (mole per cent) (kmol) (mole per cent)

Ortho o 60 60 54.44 98.0 5.56 12.5

Meta m N 4 0.33 0.6 3.67 8.3

Para p 36 36 0.79 1.4 35.21 79.2
100 100 55.56 100 e 100

Equations of operating lines

The liquid and vapour streams in the column are obtained (assuming
that McCabe and Thiele conditions hold) as follows:

Above the feed-point:

Liquid downflow L, = 5D = 277.8 kmol
Vapour up V, = 6D = 333.4 kmol
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Lewis-Matheson method: example

Equations of operating lines

Below the feed-point, assuming the feed is liquid at its boiling point then:
Liquid downflow L,=L,+F=(277.8 + 100) = 377.8 kmol
Vapour up V, =L, - W =(377.8 - 44.44) = 333.4 kmol
The equations for the operating lines may then be written as:

Lnr ) W )
below the feed plate: ¥ = 7 ¥+ — 3w (8)

m m

(3778 4444\
OF‘ThO- Vmo = 333.4 X1 333 4 Xuw

= 1.133x,,41 — 0.0166

meta: Vo = 1.133%,11 — 0.011 (i)
para: VYmp = 1.133x41 — 0.105
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Lewis-Matheson method: example

Equations of operating lines

Above the feed plate:

Vn = LT”I”*‘ + LT”.M (9)

(T8 (5556 o
ortho: e =333 ) 1+ 3334/

= 0.833x,41 + 0.163

meTG: Yam = 0-833_;4-] + 0.001 (H)
para: Vap = 0.833x,,; + 0.002
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Lewis-Matheson method: example

Composition of liguid on first plate

The temperature of distillation is fixed by safety considerations at 410 K
and, from a knowledge of the vapour pressures of the three components,
the pressure in the still is found to be about 6 kN/m?.

The composition of the vapour in the still is found from the relation

Yso = aaxso/zasxs (eqns. 6-7)

The liquid composition on the first plate is then found from equation (i).
As example and for ortho:

0.191 = (1.133x,- 0.0166) & x, = 0.183

The values of the other compositions are found in this way (see following
tables).
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Using the relation v, = w Xm0/ Lotxy:

Plate compositions below the feed plate

Component Xs X, Vs X1 WX Vi X2
0 0.125 0211 0.191 0.183 0.308 0.270 0.253
m 0.083 0.096 0.088 0.088 0.102 0.090 0.089
p 0.792 0.792 0.721 0.729 0.729 0.640 0.658
| 1.099 | | 1.139 | |
Xy V2 X3 X3 V3 X4 Xy
0 0.430 0.357 0.330 0.561 0.450 0.411 0.698
m 0.103 0.086 0.086 0.100 0.080 0.080 0.003
P 0.658 0.557 0.584 0.584 0.470 0.500 0.509
1.191 | | 1.245 | | 1.300
Component V4 X5 X5 Vs X6 oXg Ve
o 0.537 0.488 0.830 0.613 0.556 0.944 0.674
m 0.071 0.072 0.083 0.061 0.063 0.073 0.052
p 0.392 0.440 0.440 0.326 0.381 0.381 0.274
| | 1.353 | 1 1.398 |
X-
o 0.609
m 0.055
p 0.336
|
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Lewis-Matheson method: example

Plate compositions above the feed plate

C omponent X7 X7 V7 Xg Xy Vg Xg
o 0.609 1.035 0.721 0.669 1.136 0.770 0.728
m 0.055 0.064 0.044 0.051 0.059 0.040 0.047
p 0.336 0.336 0.235 0.280 0.280 0.190 0.225

I 1.435 1 1 1.475 I 1
Xy Yo X10 X0 Yio X11 X
o 1.238 0.816 0.782 1.330 0.856 0.832 1.415
m 0.054 0.035 0.041 0.047 0.030 0.035 0.040
p 0.225 0.149 0.177 0.177 0.144 0.133 0.133
1.517 1 | 1.554 1 | 1.588
A4S Xi2 X2 M2 X13 aX13 Y13
o 0.891 0.874 1.485 0.920 0.907 1.542 0.940
m 0.025 0.029 0.033 0.020 0.023 0.027 0.017
p 0.084 0.097 0.097 0.060 0.070 0.070 0.043
| 1 1.615 | 1 1.639 |
X14 QX4 Yi4 X5 X5 Yis X16
o 0.932 1.585 0.957 0.953 1.620 0.970 0.968
m 0.019 0.022 0.013 0.014 0.016 0.010 0.010
p 0.049 0.049 0.030 0.033 0.033 0.020 0.022
| 1.656 | | 1.669 | 1
X6 Vie
o 1.632 0.980
m 0.012 0.007
p 0.022 0.013
1.666 1
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Lewis-Matheson method: example

The liquid on plate 7 has a composition with the
ratio of the concentrations of ortho and para about
that in the feed, and the feed will therefore be
infroduced on this plate.

Above this plate the same method is used but the
operating equations are equation (ii).

The vapour from the 16™ plate has the required
concentration of the ortho isomer, and the values
the meta and para are sufficiently near to take this
as showing that 16 ideal plates will be required.
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Thiele-Geddes method

Like the Lewis-Matheson method, the original method of Thiele
and Geddes (1933) was developed for manual calculation. It has
subsequently been adapted by many workers for computer
applications.

The variables specified in the basic method, or that must be
derived from other specified variables, are:

1. Reflux temperature.
Reflux flow rate.
Distillate rate.

Feed flows and condition.

Column pressure.

o0k WP

Number of equilibrium stages above and below the feed point.
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Thiele-Geddes procedure

The method starts with an assumption of the column
temperature and flow profiles.

The stage equations are then solved to determine the
stage component compositions and the results used to
revise the temperature profiles for subsequent trial
calculations.

Efficient convergence procedures have been developed
for the Thiele-Geddes method.

The so-called "theta method", described by Lyster efal.
(1959) and Holland (1963), is recommended.

The Thiele-Geddes method can be used for the solution
of complex distillation problems, and for other multi-
component separation processes.
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Relaxation methods

With the exception of this method, all the methods described solve
the stage equations for the steady-state design conditions.

In an operating column other conditions will exist at start-up, and
the column will'approach the "design" steady-state conditions after
a period of time.

The stage material balance egua‘rions can be written in a finite
difference form, and procedures for the solution of these
equations will model the unsteady-state behaviour of the column.

Relaxation methods are not competitive with the "steady-state"
methods in the use of computer time, because of slow convergence.
However, because they model the actual operation of the column,
convergence should be achieved for all practical problems.

The method has the potential of development for the study of the
transient behaviour of column designs, and for the analysis and
design of batch distillation columns.
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Linear algebra methods

The Lewis-Matheson and Thiele-Geddes methods use a stage-by-
stage procedure to solve the equations relating the component
compositions to the column temperature and flow profiles.

However, the development of high-speed digital computers with
large memories makes possible the simultaneous solution of the
complete set of MESH equations that describe the stage
compositions throughout the column.

If the equilibrium relationships and flow-rates are known (or
assumed) the set of material balance equations for each component
is linear in the component compositions.

Whit the aim of a numerical method these equations are solved
simultaneously and the results used to provide improved estimates
of the temperature and flow profiles.
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Linear algebra methods

The set of equations can be expressed in matrix form and solved
using the standard inversion routines available in modern computer
systems. Convergence can usually be achieved affer a few
iterations.

It is possible to include and couple to the distillation program, some
thermodynamic method for estimation of the liquid-vapour
relationships (activity coefficients) as the UNIFAC method (see
Chapter 8, Section 16.3).

This makes the program particularly useful for the design of
columns for new processes, where experimental data for the
equilibrium relationships are unlikely to be available.
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